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Adversarial examples in tabular data
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1. Some features are
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reject invalid input
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Relation constraints on feature space

Finance:   𝑎𝑣𝑔	𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛	𝑎𝑚𝑜𝑢𝑛𝑡	 ≤ 𝑚𝑎𝑥	𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛	𝑎𝑚𝑜𝑢𝑛𝑡	
    
    𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑚𝑒𝑛𝑡 = 𝑙𝑜𝑎𝑛_𝑎𝑚𝑜𝑢𝑛𝑡× !"#_%&#'× )*!"#_%&#' !"#$

)*!"#_%&#' !"#$+)
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Given a classification model 𝐻,
 a maximum perturbation 𝜖 under a 𝐿! distance
 a set of constraints 𝛀 

Objective of constrained adversarial attacks, for clean sample 𝑥	find perturbation 𝛿 ∶

üWith 𝐻 𝑥 ≠ 𝐻(𝑥 + 𝛿)

üWith 𝐿)(𝑥, 𝑥 + 𝛿) < 𝜖	

ü 𝑥 + 𝛿 ⊨ Ω

Problem formulation
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Feature relation constraints as a penalty function

Mapping to penalty functions

Example

penalty(x,!) = 0 iff !(x) = True
Objective

penalty(x,!) = 0 iff !(x) = Truehow far is 𝑥	from satisfying ω

!1 ⌘ avg_transaction  max_transaction penalty(x,!1) = max(0, avg_transaction�max_transaction)

Constraint Penalty function

 1 =  2 |  1 �  2 |
 1   2 max(0, 1 �  2)

 1 <  2 max(0, 1 �  2 + ⌧)

!1 ^ !2 !1 + !2

!1 _ !2 min(!1,!2)
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Gradient loss + Constraints regularization

Projected Gradient Descent (PGD)

X
L0(x) = l(h(x), y)�

P
!i2⌦ penalty(x,!i)

x(k+1) = PS(x(k) + ⌘rl(h(x), y))

Constrained Adaptive PGD
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Constrained Adaptive PGD
Gradient loss + Constraints regularization

X

L0(x) = l(h(x), y)�
P

!i2⌦ penalty(x,!i)

Constrained Gradient Descent 

z(k+1) = PS(x
(k) + η(k)(∇L

′(x(k)))

Adaptive Step size 𝜼

x
(k+1) = RΩ(PS(x

(k) + α · (z(k+1)
− x

(k))

Gradient step momentum 𝜶
Current gradient direction

Previous perturbation direction

ω1 ≡ installment = loan amount×
int rate× (1 + int rate)term

(1 + int rate)term − 1

Repair operator 𝑹𝛀

⌘(0) = 2✏, ⌘(k+1) =

(
⌘(k)/2, if L0 does not decrease
⌘(k), otherwise

)

+(1� ↵) · (x(k) � x(k�1))))
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Experimental settings
Datasets:

Credit scoring
Lending Club Loan Data

ICU survival
WIDS

Botnet detection
CTU

URL phishing
URL

Models: 5 Neural network architectures
- 2 Regularizations
- 2 Transformers
- 1 Semi-supervised
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Are these attacks complementary?

Insight:
1. MOEVA and CAPGD are complementary

2. Together they subsume BF*

Set and number of successfull attacks 
across all models and datasets

(our)
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Constrained Adaptive Attack

Effectiveness

Efficiency

APGD-CE APGD-DLR FAB Square AttackInspired from AutoAttack [1]

We propose CAA CAPGD MOEVA

Of examples can be 
generated by CAA

99.9%

[1] Francesco Croce and Matthias Hein “Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks” ICML 2020 
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Impact of CAA

Insight:
CAA effectively combines the benefits of CAPGD and MOEVA
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Efficiency of CAA

Insight:
CAA reduces execution costs by up to 5 times compared to MOEVA
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RobustBench

ML System

1. Some features are
immutable or computed
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Adversarial input

CAA: tabular attack under constraints

Conclusion

Checkout our
benchmark

https://robustbench.github.io/

This project is supported by the Luxembourg National Research Fund, grant BRIDGES/2022/IS/17437536.

https://github.com/serval-uni-lu/tabularbench


