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Adversarial examples in tabular data
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1. Some features are
immutable or computed
internally

Adversarial input Relationships

2. Feature relationships
constraints are used to
reject invalid input
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Relation constraints on feature space

Finance: avg transaction amount < max transaction amount

int_ratex(1+int_rate)te™
(1+int_rate)term—1

installment = loan_amountX
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Problem formulation

Given a classification model H,
a maximum perturbation € under a L,, distance

a set of constraints

Objective of constrained adversarial attacks, for clean sample x find perturbation ¢ :
v With H(x) # H(x + §)
v With L, (x,x + ) <€

vVx+6EQ
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.
Feature relation constraints as a penalty function

Objective
penalty(x,w) how far is x from satisfying o penalty(x,w) = 0 iff w(x) = True

Example
w1 = avg_transaction < max_transaction  penalty(z,wy) = maz(0,avg transaction — max_transaction)

Mapping to penalty functions

Constraint  Penalty function

Y1 =1 | 1 — 2 |

Y1 < 1o maz (0,1 — 2)

1 < g max (0,11 — 2 + 7)

w1 /\CUQ w1 + W2

w1 V Wy min(wy, ws)
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Constrained Adaptive PGD

Projected Gradient Descent (PGD)
2 = Ps(a™ +nVi(h(z),y))

High
loss
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Gradient loss + Constraints regularization

L'(x) =1(h(x),y) — D o, cq Penalty(z, w;)

\
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loss
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B
Constrained Adaptive PGD

Gradient loss + Constraints regularization

L'(z) =1(h(x),y) — )., cqPrenalty(x,w;)
Constrained Gradient Descent

S(kt1) Ps(fb“(k) 4 n(k)(VE’(x(k)))

High
loss

Adaptive Step size n
(k) /2. if £’ does not decrease
' = 2¢, n* ) = { n(k:)/ i
'\, otherwise Low
loss
Gradient step momentum «
gD — RQ(PS(CIZ(k) + « - (Z(k+1) — le(k)) Current gradient direction

-|-(1 — a) ' (x(k) - Qi(k_l)))) Previous perturbation direction

Repair operator R
P P @ int_rate X (1 4 int_rate)t™

(1 + int_rate)term — 1

w1 = installment = loan_amount X
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Experimental settings

Datasets:
< & R
5 [} N
Credit scoring Botnet detection URL phishing ICU survival
Lending Club Loan Data CTU URL WIDS

Models: 5 Neural network architectures
- 2 Regularizations

- 2 Transformers

- 1 Semi-supervised
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Are these attacks complementary?

Insight:
CAPGD MOEVA 1. MOEVA and CAPGD are complementary
(our) 2. Together they subsume BF*
953
5299
477
953
357
. 5
BF*

Set and number of successfull attacks
across all models and datasets
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B
Constrained Adaptive Attack

y

Inspired from AutoAttack [1] APGD-CE APGD-DLR > FAB

Square Attack

We propose CAA CAPGD MOEVA 99 9 %

l Of examples can be
generated by CAA

[1] Francesco Croce and Matthias Hein “Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks” ICML 2020 R RIKZN " I" I“ 10
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Impact of CAA

Robust accuracy
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Models: TabTr RLN VIME STG TabNet

Attacks: = Clean m CAPGD mMOEVA mCAA
Dataset: Lending Club Loan data

Insight:
CAA effectively combines the benefits of CAPGD and MOEVA
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Efficiency of CAA

Duration in seconds
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Models: TabTr RLN VIME STG TabNet

Attacks: m CAPGD mMOEVA mCAA

Dataset: Lending Club Loan data

Insight:
CAA reduces execution costs by up to 5 times compared to MOEVA
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Conclusion

RobustBench CAA: tabular attack under constraints

/ Checkout our
ML System

RoBUSTBENCH Leaderboards Paper b e n C h m a r k __________________________ 1

It adds the MeanSparse o
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0, 1]V e ML Classifier

Adversarial Robustness Limits via Scaling-Law
3 and Human-Alignment Studies 93.11% 71.59% 71.59%

It uses additional 300M synthetic images in training.

X

Robust Principles: Architectural Design

4 Principles for Adversarially Robust CNNs 93.27% 71.07% 71.07% X X oG BMVC 2023

It uses additional 50M synthetic images in training.
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Better Diffusion Models Further Improve .
VideResNet-70-
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https://robustbench.github.io/ https://github.com/serval-uni-lu/tabularbench
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