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Problem: Performance drift 7 —
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Drift detectors

Distribution
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Ideal scenario
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ML model lifecycle

Machine learning engineering
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ML model lifecycle
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Real-world Systems

C Y £ £ £ 9 99 39 o

Ruft New model in production
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Real-world Systems

5d Labelling delay -5[ Deployment delay
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Problem

5d Labelling delay -5[ Deployment delay

hy, : X =)  Classification model trained atime ~ t; Usingdata {x;,y;} such that t; + § < t¢;

htj can only make prediction on {Xk} such that tj + Og < tg
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Problem

5d Labelling delay -5[ Deployment delay

hy, : X =)  Classification model trained atime ~ t; Usingdata {x;,y;} such that t; + § < t¢;

htj can only make prediction on {Xk} such that tj + Og < tg

sched = {t;...t,} Retraining schedule determining the sequence of models H = {hy, ... h, ... h: }
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Problem

5d Labelling delay -5[ Deployment delay

hy, : X =)  Classification model trained atime ~ t; Usingdata {x;,y;} such that t; + § < t¢;

htj can only make prediction on {Xk} such that tj + Og < tg

sched = {t;...t,} Retraining schedule determining the sequence of models H = {hy, ... h, ... h: }

LXi is classifiedas  ; = hy, (;) where t, = max{ty € sched s.t. t + dprod < t;}
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Problem

5d Labelling delay - 5[ Deployment delay
hy, : X =)  Classification model trained atime ~ t; Usingdata {x;,y;} such that t; + § < t¢;

htj can only make prediction on {Xk} such that tj + Og < tg

sched = {t;...t,} Retraining schedule determining the sequence of models H = {hy, ... h, ... h: }

LXi is classifiedas  ; = hy, (;) where t, = max{ty € sched s.t. t + dprod < t;}

We evaluate the schedule  sched = {t;...t,} We evaluate the schedule of effectiveness and cost

s = score(Y,Y) = MCC(Y,Y)

c = cost(sched) = |H| |
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Evaluating drift detectors

Train Drift Detectors Hyper-Pameters
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Figures from sklearn documentation:
https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html
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Evaluating drift detectors
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Train model on the train Evaluate a single drift detector and parameters with realistic delays
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Evaluating drift detectors

Evaluate the solution using best training parameters for each detector
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Empirical results on real-world financial system

2 years of data 4 years of data

Type Detector

No detection

Baseline . .
Periodic

Statistical test
Divergence
PCA-CD

ADWIN (CE)
ADWIN (PE)
DDM
EDDM
Error-based HDDM-A
detector HDDM-W
KSWIN (CE)
KSWIN (PE)
Page-Hinkley (CE)
Page-Hinkley (PE)

Data-based
detector

Predictive-based Uncertainty
detector Aries ADWIN

L ]
il | M
X BNP PARIBAS a

7



L= BGL

Empirical results on real-world financial system Bl sweas
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Empirical results on real-world financial system Bl sweas
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Not considering delay overestimates the effectiveness/efficiency trade-off of retraining schedules
Change in delay disrupts the ranking of drift detectors "
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Empirical results on real-world financial system
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Change in delay has an inverse effect on efficiency/effectiveness.
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L= BGL

Empirical results on real-world financial system Bl sweas

—— Current strategy
—— Proposed strategy
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Conclusion

5d Labelling delay 61 Deployment delay

hy, : X =Y t; Usingdata {x;,y;} such that t; + & <¢;

Classification model trained a time

h;,;  can only make prediction on {Xk} such that ¢; + 04 < tx

sched = {t;...t,} Retraining schedule determining the sequence of models H = {ht1 . htj . htn}

'_X,' isclassifiedas  §; = hy, (z;) where t, = max{ts € sched s.t. ty + Oproa < t;}

We evaluate the schedule  sched = {t;...%,} We evaluate the schedule of effectiveness and cost

s = score(Y,Y) = MCC(Y,Y)
¢ = cost(sched) = |H|
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Conclusion

5d Labelling delay
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We evaluate the schedule  sched = {t1...%,} We evaluate the schedule of effecti
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s = score(Y,Y) = MCC(Y,Y)
¢ = cost(sched) = |H|
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