

TabularBench: Benchmarking Adversarial Robustness for Tabular Deep IIII.III

Learning in Real-world Use-cases ¹University of Luxembourg, ²Luxembourg institute of Science and Technologies, ³Riken AIP Thibault Simonetto¹, Salah Ghamizi^{2,3} and Maxime Cordy¹ Contact: thibault.simonetto@uni.lu

Survival

Selection

Crossover

Model architectures

TabTransformer

- RLN

- STG

TabNet

- VIME

Problem ML System Attacker objective immutable or computed $\checkmark H(x) \neq H(x + \delta)$ internally $\checkmark L_p(x, x + \delta) < \epsilon$ $\checkmark x + \delta \in \mathcal{X}_{\Omega}$ Adversarial input

2. Feature relationships

constraints are used to

reject invalid input

$H: \mathcal{X} \to \mathcal{Y}$ the classification model L_n the distance according to a p-norm $\mathcal{X}_{\Omega} \subseteq \mathcal{X}$ the subspace where x satisfies all constraints $\omega \in \Omega$

_______ **Example of constraint:**

 $H(X) \in [0,1]^N$

 $int_rate \times (1 + int_rate)^{term}$ $installment = loan_amount \times f$ $(1 + int_rate)^{term} - 1$

Respected

ML Classifier

Constraints grammar:

$$\omega \coloneqq \omega_1 \wedge \omega_2 \mid \omega_1 \vee \omega_2 \mid \psi_1 \succeq \psi_2$$

$$\psi \coloneqq c \mid f_i \mid \psi_1 \oplus \psi_2 \mid x_i$$

Known attacks produce invalid examples:

PGD	X
AutoAttack	X

	Max trans.	Avg trans.	Acc. creation	Age
Adversarial	\$2500	\$3000	1 year	22

Adversarial violates Avg transaction $\leq Max$ transaction

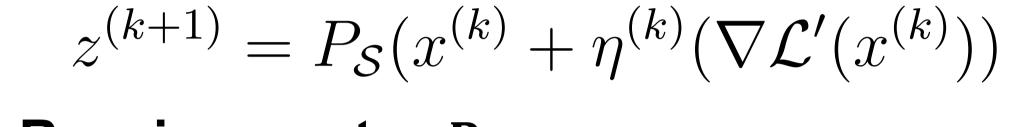
Constraints as a penalty function:

Constraint	Penalty function	Constraint example	Penalty function example
$\psi_1 = \psi_2$	$\mid \psi_1 - \psi_2 \mid$	$rec_per_month = record/month$	rec_per_month - (record/month)
$\psi_1 \le \psi_2$	$max(0,\psi_1-\psi_2)$	$open_acc \leq total_acc$	$max(0, open_acc - total_acc)$
$\psi_1 < \psi_2$	$max(0, \psi_1 - \psi_2 + \tau)$	open_acc < total_acc	$max(0, open_acc - total_acc + 10^{-5})$
$\omega_1 \wedge \omega_2$	$\omega_1 + \omega_2$	$((\text{term} = 36) \lor (\text{term} = 60)) \land (\text{open_acc} \le \text{total_acc})$	$\min(\text{term} - 36 , \text{term} - 60) + \max(0, \text{open_acc} - \text{total_acc})$
$\omega_1 \vee \omega_2$	$\min(\omega_1,\omega_2)$	$(\text{term} = 36) \lor (\text{term} = 60)$	$\min(\text{term} - 36 , \text{term} - 60)$

Projected Gradient Descent (PGD) $x^{(k+1)} = P_{\mathcal{S}}(x^{(k)} + \eta \nabla l(h(x), y))$

Gradient loss + Constraints regularization $\mathcal{L}'(x) = l(h(x), y) - \sum_{\omega_i \in \Omega} penalty(x, \omega_i)$

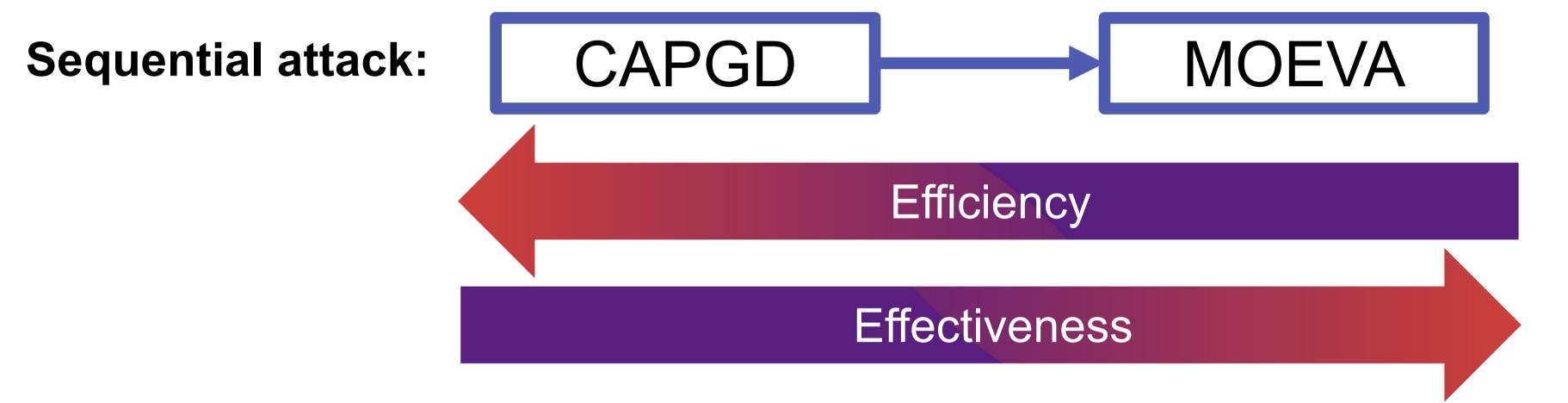
Constrained Gradient Descent



Repair operator R_{Ω}

CAPGD (white-box)

Constrained Adaptive Attack (CAA)



MOEVA (gray-box)

Multi-objective genetic algorithm (NSGA-III)

 $minimise\ g_1(x) \equiv h(x)$

minimise $g_2(x) \equiv L_p(x - x_0)$

minimise $g_3(x) \equiv$

Metrics

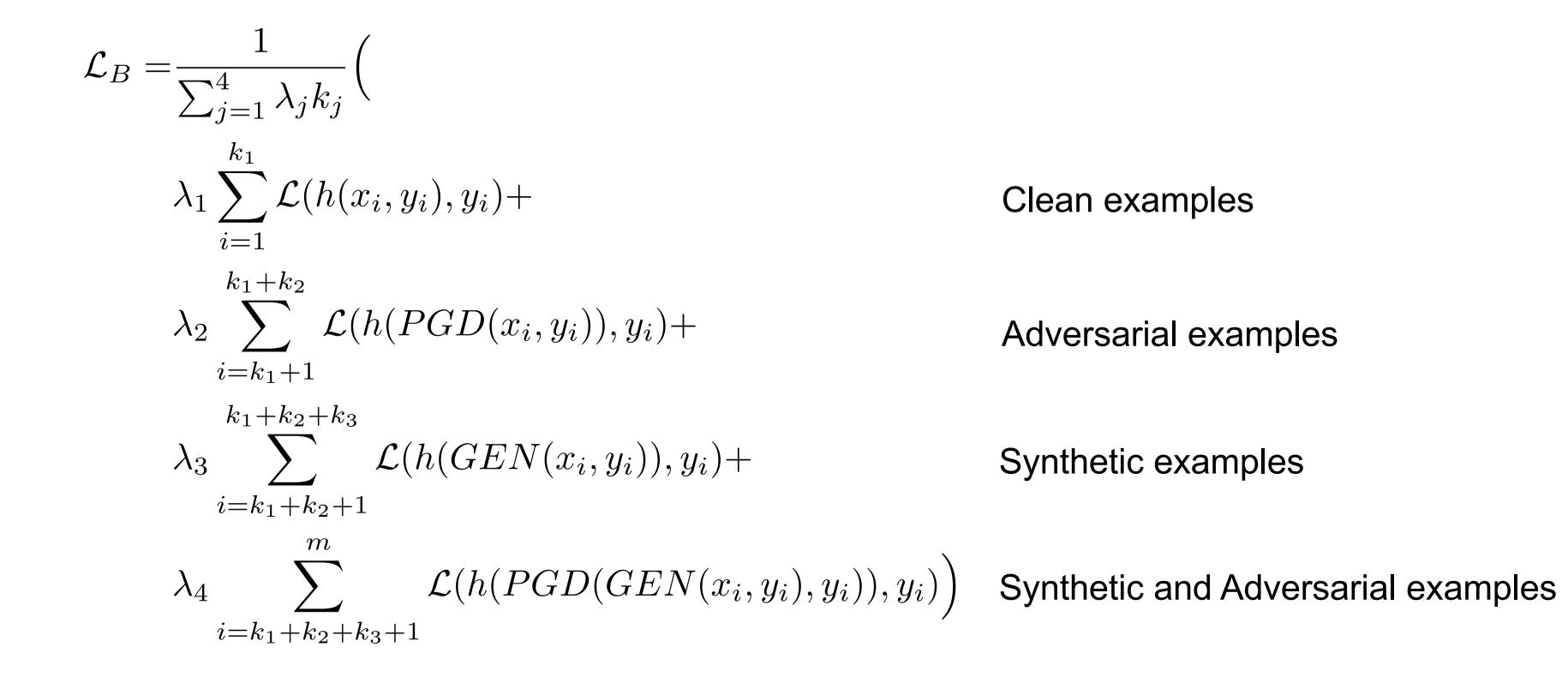
Correctly classified adversarial examples $Robust \ accuracy = -$ # Clean examples

TABULARBENCH

Regularized adversarial training

 $\hat{\mathcal{L}}_B = \frac{1}{(m-k) + \lambda k} \left(\lambda \sum_{i=1}^n \mathcal{L}(h(PGD(x_i, y_i)), y_i) + \sum_{i=k+1}^m \mathcal{L}(h(x_i), y_i) \right)$

Regularized adversarial training with data augmentation



Training

- Standard
- Adversarial training
- CT-GAN
 - GOGGLE

- None

TableGAN

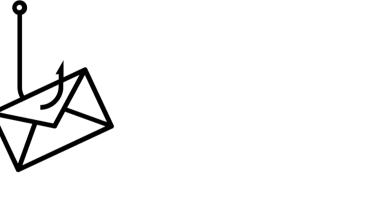
Data augmentation

- TVAE
- WGAN CutMix

Three domains, five datasets

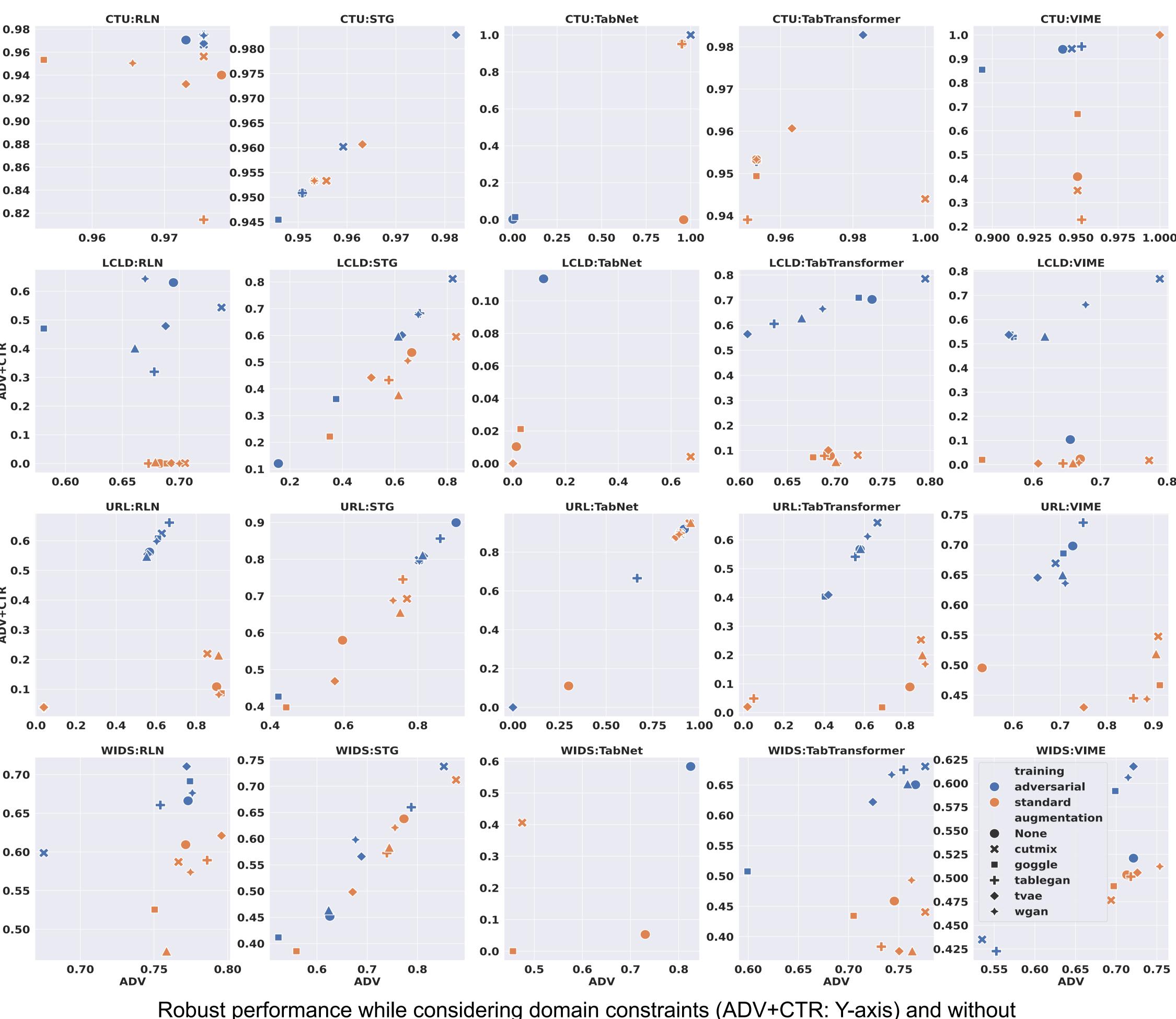
Credit scoring

Lending Club Loan Data



MALWARE

Results



Robust performance while considering domain constraints (ADV+CTR: Y-axis) and without (ADV: X-axis) on all our use cases confirms the relevance of studying constrained-aware attacks.

API

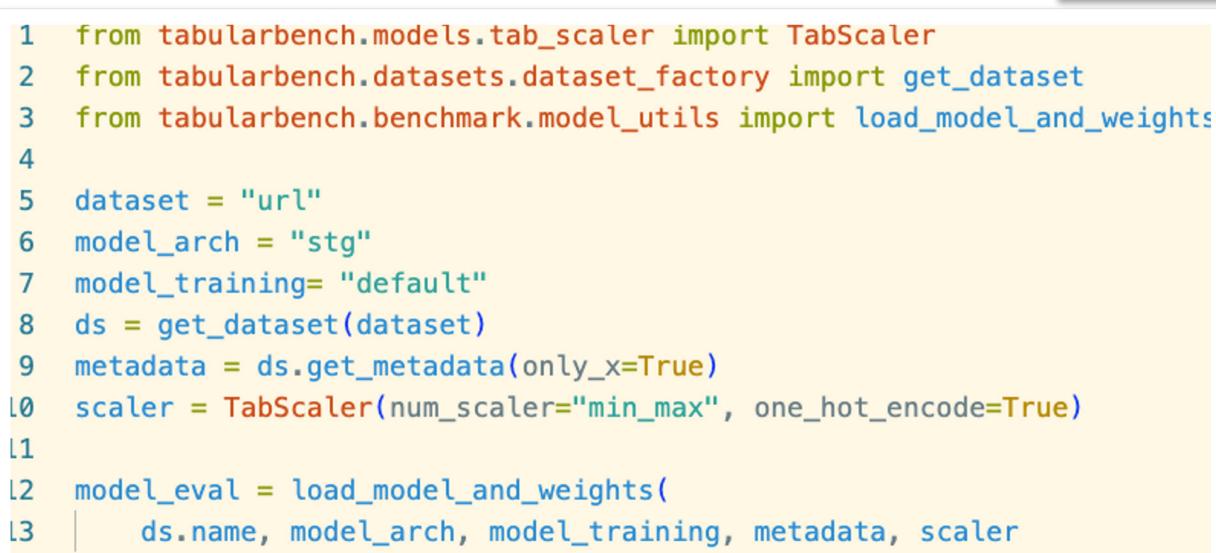
Available on PyPi, Conda and Docker

pip install tabularbench

Models on Hugging Face

serval-uni-lu/tabularbench

Access to datasets and models ↓



Constraints access and definition ↓

2 from tabularbench.datasets.samples.lcld import get_relation_constraints 4 lcld_constraints = get_relation_constraints() 6 new_constraint = ((Feature("term") == Constant(36)) (Feature("term") == Constant(48)) (Feature("term") == Constant(60))

Learn more

Paper

290 Pre-trained models

11 lcld_constraints[3] = new_constraint