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Adversarial examples in tabular data
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Relation constraints on feature space

Finance:   𝑎𝑣𝑔	𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛	𝑎𝑚𝑜𝑢𝑛𝑡	 ≤ 𝑚𝑎𝑥	𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛	𝑎𝑚𝑜𝑢𝑛𝑡	
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Given a classification model 𝐻,
 a maximum perturbation 𝜖 under a 𝐿! distance
 a set of constraints 𝛀 

Objective of constrained adversarial attacks, for clean sample 𝑥	find perturbation 𝛿 ∶

üWith 𝐻 𝑥 ≠ 𝐻(𝑥 + 𝛿)

üWith 𝐿)(𝑥, 𝑥 + 𝛿) < 𝜖	

ü 𝑥 + 𝛿 ⊨ Ω

Constrained adversarial attacks
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Experimental settings
Datasets:

Credit scoring
Lending Club Loan Data

ICU survival
WIDS

Botnet detection
CTU

URL phishing
URL

Models: 5 Neural network architectures
- 2 Regularizations
- 2 Transformers
- 1 Semi-supervised

Attack: Constrained Adaptive Attack [1]:

[1] Thibault Simonetto, Salah Ghamizi, and Maxime Cordy. "Constrained Adaptive Attack: Effective Adversarial Attack Against Deep Neural Networks for Tabular 
Data" in Advances in Neural Information Processing Systems, 2024.

CAPGD MOEVA

Malware detection
MALWARE
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Madry Adversarial training
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Adversarial part solved using PGD

Regularization via mix of clean and adversarial examples

x(k+1) = PS(x(k) + ⌘(k)rl(h(x), y))
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Data augmentation with Adversarial training

Clean examples

Adversarial examples

Synthetic examples

Synthetic and Adversarial  examples
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Data augmentations

Contribution I Contribution II Contribution III ConclusionIntroduction

Real
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https://towardsdatascience.com/cutout-mixup-and-cutmix-implementing-
modern-image-augmentations-in-pytorch-a9d7db3074ad

Deep Generative Models
- Cutmix - CTGAN, TVAE, GOGGLE, TableGAN, WGAN 
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Large scale empirical study

Clean accuracy

Robust accuracy
  - Constrained 
  - Unconstrained
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Impact on robust accurracy

Insight:
Adversarial training with data augmentation outperforms adversarial training alone.
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Models:

Dataset: Lending Club Loan data
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TabularBench: A benchmark for Tabular robustness

Source code of models, attacks, dataset, constraints

https://github.com/serval-uni-lu/tabularbench
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TabularBench: A benchmark for Tabular robustness
Leaderboard: evaluation of 200+ models

https://serval-uni-lu.github.io/tabularbench/
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TabularBench: A benchmark for Tabular robustness
Simplified contributions

https://serval-uni-lu.github.io/tabularbench/doc/constraints.html
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TabularBench: A benchmark for Tabular robustness
Simplified contributions

https://github.com/serval-uni-lu/tabularbench/issues
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TabularBench: A benchmark for Tabular robustness
Towards building robust machine learning models for Constrained Tabular Data

Checkout our
benchmark

This project is supported by the Luxembourg National Research Fund, grant BRIDGES/2022/IS/17437536.

5 constrained datasets
   - Up to 360 constraints

5 model architectures

14 training methods

290 pretrained models

Available on pip, conda and docker


