NeurIPS 2024 – Datasets and Benchmarks

TabularBench: Benchmarking Adversarial Robustness for Tabular Deep Learning in Real-world Use-cases

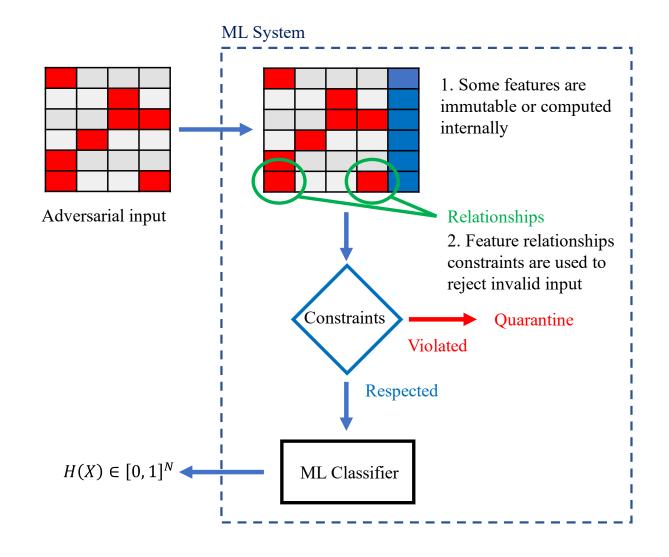
Thibault Simonetto¹, Salah Ghamizi^{2, 3}, Maxime Cordy¹

¹University of Luxembourg, Luxembourg

²Luxembourg Institute of Science and Technology, Luxembourg

³RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Adversarial examples in tabular data



Relation constraints on feature space

Finance:

 $avg\ transaction\ amount\ \leq max\ transaction\ amount$

$$installment = loan_amount \times \frac{int_rate \times (1+int_rate)^{term}}{(1+int_rate)^{term}-1}$$

Constrained adversarial attacks

Given a classification model *H*,

a maximum perturbation ϵ under a L_p distance

a set of constraints Ω

Objective of **constrained** adversarial attacks, for clean sample x find perturbation δ :

✓ With
$$H(x) \neq H(x + \delta)$$

✓ With
$$L_p(x, x + \delta) < \epsilon$$

$$\checkmark x + \delta \vDash \Omega$$

Experimental settings

Datasets:

Credit scoring Lending Club Loan Data

Botnet detection CTU

URL phishing URL

Malware detection MALWARE

ICU survival WIDS

Models: 5 Neural network architectures

- 2 Regularizations
- 2 Transformers
- 1 Semi-supervised

Attack: Constrained Adaptive Attack [1]: CAPGD → MOEVA

Madry Adversarial training

Saddle point problem

$$\underset{\theta}{\operatorname{arg\,min}} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{\delta\in\mathcal{S}} l(\theta, x+\delta, y) \right]$$

Training

Adversarial

Adversarial part solved using PGD

$$x^{(k+1)} = P_{\mathcal{S}}(x^{(k)} + \eta^{(k)} \nabla l(h(x), y))$$

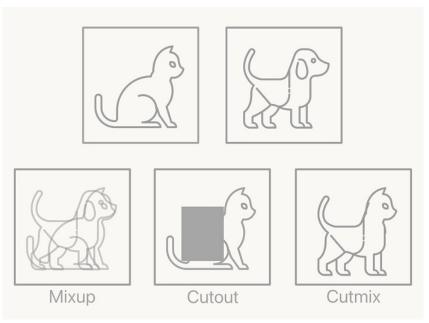
Regularization via mix of clean and adversarial examples

$$\hat{\mathcal{L}_B} = \frac{1}{(m-k) + \lambda k} \left(\lambda \sum_{i=1}^k \mathcal{L}(h(PGD(x_i, y_i)), y_i) + \sum_{i=k+1}^m \mathcal{L}(h(x_i), y_i) \right)$$

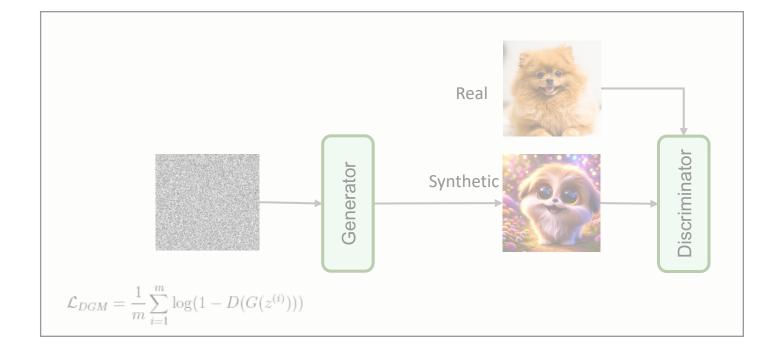
Data augmentation with Adversarial training

$$\mathcal{L}_B = \frac{1}{\sum_{j=1}^4 \lambda_j k_j} \left(\\ \lambda_1 \sum_{i=1}^{k_1} \mathcal{L}(h(x_i, y_i), y_i) + \\ \lambda_2 \sum_{i=k_1+1}^{k_1+k_2} \mathcal{L}(h(PGD(x_i, y_i)), y_i) + \\ \lambda_3 \sum_{i=k_1+k_2+k_3}^{k_1+k_2+k_3} \mathcal{L}(h(GEN(x_i, y_i)), y_i) + \\ \lambda_4 \sum_{i=k_1+k_2+k_3+1}^{m} \mathcal{L}(h(PGD(GEN(x_i, y_i), y_i)), y_i) \right) \quad \text{Synthetic and Adversarial examples}$$

Data augmentations



https://towardsdatascience.com/cutout-mixup-and-cutmix-implementing-modern-image-augmentations-in-pytorch-a9d7db3074ad



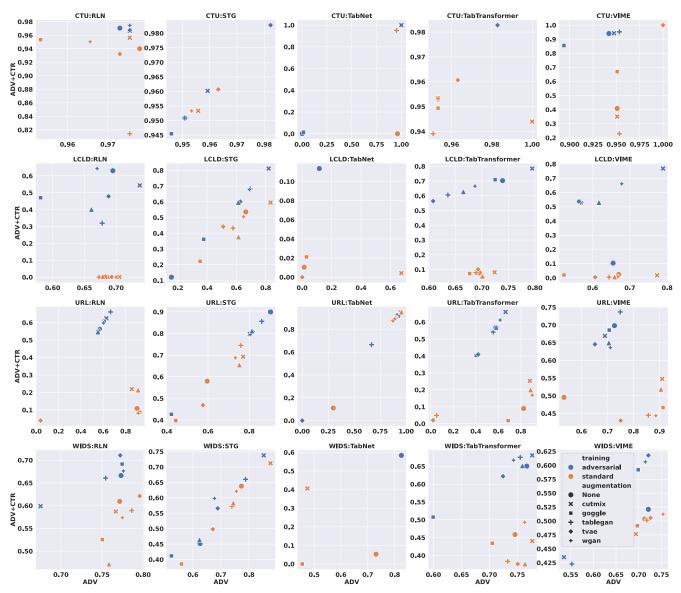
Heuristic-based

- Cutmix

Deep Generative Models

- CTGAN, TVAE, GOGGLE, TableGAN, WGAN

Large scale empirical study



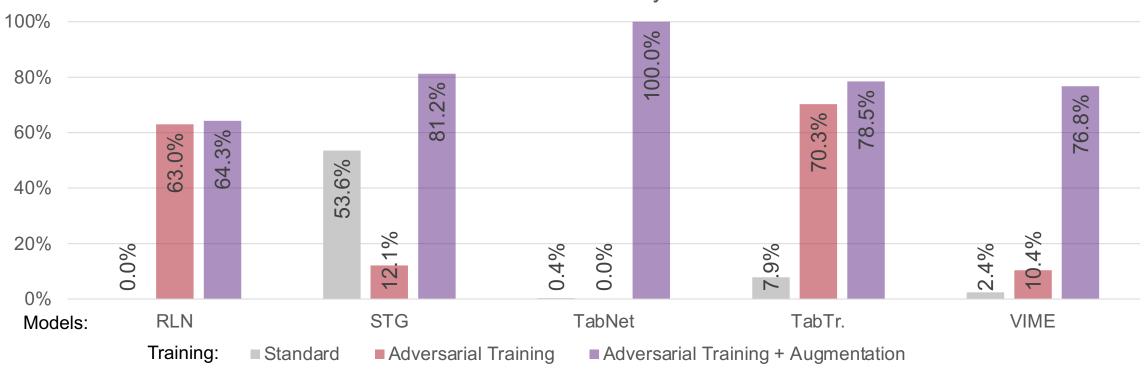
Clean accuracy

Robust accuracy

- Constrained
- Unconstrained

Impact on robust accurracy

Robust accuracy

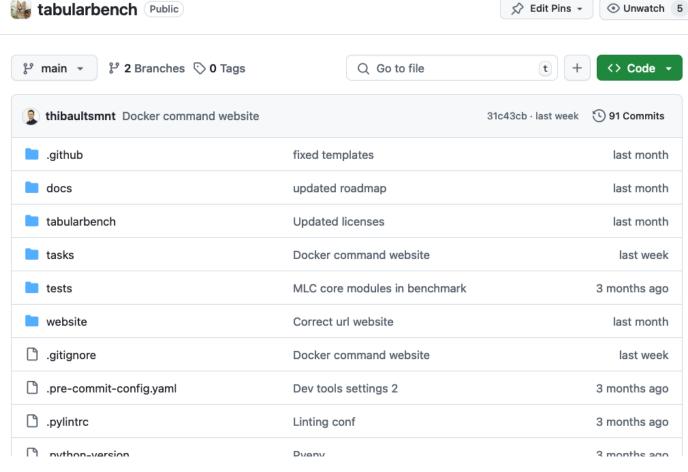


Dataset: Lending Club Loan data

Insight:

Adversarial training with data augmentation outperforms adversarial training alone.

Source code of models, attacks, dataset, constraints



Leaderboard: evaluation of 200+ models

tabularbench

TabularBench: Adversarial robustness benchmark for tabular data Documentation

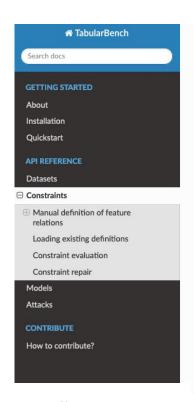
Leaderboard

You are currently viewing results of the leaderboard. View MOEVA attack results here.

CTU 🔗

						Search:		
architecture	training \$	augmentation \$	ID ≑	ADV+CTR ∜	ADV \$	auc 🕸	accuracy ^	precisio
TabNet	adversarial	tvae	1	1	1	0.976447	0.00738898	0.007388
VIME	adversarial	ctgan	1	1	1	0.741099	0.00738898	0.007388
VIME	adversarial	tvae	1	1	1	0.727257	0.00738898	0.007388
VIME	standard	ctgan	1	1	1	0.972449	0.00738898	0.007388
VIME	standard	tvae	1	1	1	0.949582	0.00751607	0.007389
TabNet	adversarial	ctgan	1	1	1	0.976819	0.0156676	0.007450
TabTransformer	standard	ctgan	1	0.94398	1	0.630416	0.0437893	0.00766
TabTransformer	adversarial	ctgan	1	0.94398	1	0.627151	0.0448604	0.007676
STG	adversarial	tvae	0.982801	0.982801	0.98231	0.981094	0.435641	0.01270
TabTransformer	adversarial	tvae	0.982801	0.982801	0.982801	0.974144	0.608674	0.01822
STG	standard	tvae	0.963145	0.960688	0.963145	0.984115	0.890109	0.06096
CTC	advargarial	otaan	0.050500	0.060107	0.050214	0.006310	0.000570	0.00101

Simplified contributions



Manual definition of feature relations

all classes below are defined in tabularbench.constraints.relation_constraint.

Constraints between features can be expressed in natural language. For example, we express the constraint F0 = F1 + F2 such as:

```
from tabularbench.constraints.relation_constraint import Feature
constraint1 = Feature(0) == Feature(1) + Feature(2)
```

https://serval-uni-lu.github.io/tabularbench/doc/constraints.html

Simplified contributions

Add a title

[New model]:

Model name

Provide a name for the model.

e.g., TabTransformer Cutmix Model

Paper & authors references

Provide a name of the associated paper with the relevant bibtex

e.g., @article{simonetto2024constrained, title={Constrained Adaptive Attack: Effective Adversarial Attack Against Deep Neural Networks for Tabular Data}, author={Simonetto, Thibault and Ghamizi, Salah and Cordy, Maxime}, journal={arXiv preprint arXiv:2406.00775}, year={2024}}

Leaderboard claim(s)

Add here the claim for your model.

- * Architecture:
- * Dataset:
- * Eps:
- * Clean accuracy:

Share my model in the model zoo

Towards building robust machine learning models for Constrained Tabular Data

Checkout our benchmark

5 constrained datasets

- Up to 360 constraints

5 model architectures

14 training methods

290 pretrained models

Available on pip, conda and docker