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Adversarial examples are subject to domain constraints
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Adversarial examples are inputs carefully designed to cause erroneous predictions in machine learning systems.
To fool real-world systems, they must respect domain constraints.

Constraints as a penalty function Constrained Adaptive PGD
Example of constraint: Gradient step momentum
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Penalty function:
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Loss function:

L'(z) = L(x,y,h, Q) =I(h(z) Z penalty(z, w;)

= Repair operator: project values of feature in equality

constraints.
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CAPGD subsumes other gradient attacks
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TabularBench: a comprehensive
TabTr. RLN VIME STG TabNet benchmark of robustness of tabular

mClean “LPF —CPGD mCAPGD deep learning classification models.
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